Fast–ICA for Mechanical Fault Detection and Identification in Electromechanical Systems for Wind Turbine Applications

نویسندگان

  • Mohamed Farhat
  • Yasser Gritli
  • Mohamed Benrejeb
چکیده

Recently, the approaches based on source separation are increasingly adopted for the fault diagnosis in several industrial applications. In particular, Independent Component Analysis (ICA) method is attractive, thanks to its simplicity of implementation. In the context of electrical rotating machinery with a variable speed, namely the wind turbine type, the interaction between the electrical and mechanical parts along with the fault is complex. Therefore, the essential system variables are affected and it thereby requires to be analyzed in order to detect the presence of certain faults. In this paper, the target system is the classical association of a doubly-fed induction motor to a two stage gearbox for wind energy application system. The investigated mechanical fault is a uniform wear of two gear wheels for the same stage. The idea behind the proposed technique is to consider the fault detection and identification as a source separation problem. Based on the analysis into independent components, Fast–ICA algorithm is adopted to separate and identify the sources of the gear faults. Afterwards, a spectral analysis is applied on the signals resulting from the separation in order to identify the fault components related to the damaged wheels. The efficiency of the proposed technique for the separation and identification of the fault components is evaluated by numerical simulations. Keywords—Source separation; fault diagnosis; independent component analysis; fast–ICA; spectral analysis

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the development of a sliding mode observer-based fault diagnosis scheme for a wind turbine benchmark model

This paper addresses the design of an observer-based fault diagnosis scheme, which is applied to some of the sensors and actuators of a wind turbine benchmark model. The methodology is based on a modified sliding mode observer (SMO) that allows accurate reconstruction of multiple sensor or actuator faults occurring simultaneously. The faults are reconstructed using the equivalent output err...

متن کامل

On the development of a sliding mode observer-based fault diagnosis scheme for a wind turbine benchmark model

This paper addresses the design of an observer-based fault diagnosis scheme, which is applied to some of the sensors and actuators of a wind turbine benchmark model. The methodology is based on a modified sliding mode observer (SMO) that allows accurate reconstruction of multiple sensor or actuator faults occurring simultaneously. The faults are reconstructed using the equivalent output err...

متن کامل

Robust Model- Based Fault Detection and Isolation for V47/660kW Wind Turbine

In this paper, in order to increase the efficiency, to reduce the cost and to prevent the failures of wind turbines, which lead to an extensive break down, a robust fault diagnosis system is proposed for V47/660kW wind turbine operated in Manjil wind farm, Gilan province, Iran. According to the acquired data from Iran wind turbine industry, common faults of the wind turbine such as sensor fault...

متن کامل

Improving Data-based Wind Turbine Using Measured Data Foggy Method

The purpose of this paper is to improve the modeling of the data-driven wind turbine system that receives data from noise signals. Most of the data on industrial systems is noisely and data noise is inevitable and natural. The method and idea proposed in this paper, Data Fogging, significantly reduce the impact of noise on data-driven wind turbine system modeling, which is the basis of this met...

متن کامل

Model-based Approach for Multi-sensor Fault Identification in Power Plant Gas Turbines

In this paper, ‎the multi-sensor fault diagnosis in the exhaust temperature sensors of a V94.2 heavy duty gas turbine is presented‎. ‎A Laguerre network-based fuzzy modeling approach is presented to predict the output temperature of the gas turbine for sensor fault diagnosis‎. Due to the nonlinear dynamics of the gas turbine, in these models the Laguerre filter parts are related to the linear d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017